Measurement errors and uncertainties

工学系研究科•機械工学専攻 Jean－Jacques Delaunay
jean＠mech．t．u－tokyo．ac．jp

Basic concepts and terms

－Variables
－Experimental tests are performed to answer a question． Once the question is defined，we need to identify the relevant process parameters and variables．Variables are quantities that influence the test．
－An independent variable can be changed independently of other variables
－A dependent variable is affected by changes in one or more other variables．
－Controlled variables
－A variables is controlled if it can be held at a constant value or at some prescribed condition during a measurement．

Outline

－Error analysis main goals
－Error types and origins
－Random vs．systematic errors
－Instrumental uncertainties，statistical uncertainties，miscalibration errors
－Uncertainty due to random errors
－Gaussian（normal）distribution
Student＇s t distribution
－Binomial distribution
－Poisson distribution
－Uncertainty due to systematic errors
－Total uncertainty
－Uncertainty of a result
－Covariance and correlation

Basic concepts and terms

－Uncontrolled variables
－Variables that are not or cannot be controlled during measurement，but affect the value of the variable measured．
－Their influence can confuse the clear relation between cause and effect in a measurement．

Effect of uncontrolled variables：

－Interference

impose a false trend

－Noise

increase data scatter

Time［s］

Basic concepts and terms

- Measurable Quantity
- A property of phenomena, bodies, or substances that can be expressed quantitatively (e.g. length, mass, time...)
- Measurement
- The process of finding the value of a quantity.
- True value of a measurable quantity
- The actual value of the quantity being measured
- Measurement error
- The deviation of the measurement from the true value
- Uncertainty
- Interval within which the true value of the measured quantity lies with a given probability

Errors

- Errors are not mistakes
- It is impossible to completely eliminate them.
- Repeat the same measurements several times
- The spread in your measured values gives a valuable indication of the uncertainty in your measurements (take a sample). Only valid for random errors.
- Type of errors: random / systematic
- Source of errors: instrumental errors, statistical errors, miscalibration

Error and uncertainty

True value: Actual value of the parameter being measured Error: Single value which cannot be known exactly; idealized concept

Uncertainty True
 value

Uncertainty

Uncertainty: Interval that has a pre-assigned probability of containing
the true value; cannot be used to correct a measurement result

Error analysis main goals

All measurements are subject to uncertainties
=> Error analysis is the study and evaluation of these uncertainties
-How large are uncertainties?
-How to reduce uncertainties?

Population and sample

Population: the set of all possible measurements of a parameter

```
Population
Sample
```

Samples must be chosen so that they are representative of the population

When the sample is not representative of the entire population, the sample is said to be biased and can lead to wrong statements about the population.

The sources of uncertainties: Instrumental uncertainties

Fluctuations in readings due to imperfection in the equipment (lack of precision), surrounding noise, etc.

Examples:
-Number of bits used in an ADC
-Fluctuations in the power supply
-Effect of cables
-Effect of thermal noise (Johnson noise)

Random and systematic errors

The sources of uncertainties: Statistical uncertainties

Number of counts in a detector per unit time for a random process (e.g. photons hitting a detector, shot noise in electronic device)

Origin

- Statistical uncertainties arise from statistical fluctuations (random process) in the collections of numbers of counts over finite intervals of time.
- Not related to a lack of precision in the measuring instruments!

Properties

- The standard deviation is the root of the mean: $\sigma=\sqrt{\mu}$
- The observed values are distributed according to a

Poisson distribution.

The sources of uncertainties:
Systematic errors

- Difficult to detect; check the measuring device against a device known to be more reliable.
- Systematic uncertainties cannot be treated statistically; random uncertainties can be treated statistically.
- Most common causes of systematic errors: imperfect calibration corrections, imperfect data acquisition systems, imperfect data reduction techniques

Uncertainty due to random errors

- The Gaussian distribution
- The Student's t distribution
- The Poisson distribution
- The Chi-square distribution

Statistical treatment of random uncertainties distributed according to the Gaussian distribution

Statistical treatment of random uncertainties: Main results

Hypothesis: systematic errors are negligible and random errors are small N measurements x_{1}, \ldots, x_{N} of the same quantity X

The best estimate of the quantity X	$\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}$
The sample standard deviation	$\sigma_{x}=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}$
The standard deviation of the mean	$\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{N}}$
The value of X (Expect 95% of any measurements of X to fall in the range $\left.\bar{x} \pm 2 \sigma_{-}\right)$ $\bar{x} \pm 2 \sigma_{\bar{x}}$ Generally, $\bar{x} \pm t \sigma_{-}$with $P\left(\right.$ within $\left.t \sigma_{-}\right)$	

Histograms: Bar histogram
 (Handle and display discrete measurements)

Integer values x_{k}, with n_{k} the number of times it occured
$\sum_{k} n_{k}=N$
fraction $F_{k}=\frac{n_{k}}{N}$
$\sum_{k} F_{k}=1$ (normalization condition)
$\bar{x}=\sum_{k} x_{k} F_{k}$

In the absence of systematic error, we may assume that the histogram peak is somewhere near the true value X. The spread about the peak gives an indication of the precision of the measurements

Limiting distributions

Limiting distribution: The distribution of results that would be obtained if the number of measurements becomes infinitely large

N measurements x_{1}, \ldots, x_{N} of x, with $N \rightarrow \infty$
$f(x) d x$ fraction of measurements that falls in $[x, x+d x]$
$f(x) d x$ probability that any one measurement falls in $[x, x+d x]$
$\int_{-\infty}^{\infty} f(x) d x=1$ (normalization condition)
Mean value expected after many measurements : $\bar{x}=\int_{-\infty}^{\infty} x f(x) d x=X$
Mathematical expectation of the random variable x is $E(x)=\bar{x}=\int_{-\infty}^{\infty} x f(x) d x$

Normal distribution: Normalization

Normalization condition : $\int_{-\infty}^{\infty} f(x) d x=1$
$f(x)=C e^{-\frac{1}{2}\left(\frac{x-X}{\sigma}\right)^{2}}$
$1=\int_{-\infty}^{\infty} f(x) d x=C \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left(\frac{x-X}{\sigma}\right)^{2}} d x$
$u=\frac{1}{\sqrt{2}}\left(\frac{x-X}{\sigma}\right)$ and get
Normal distribution
$1=C \sigma \sqrt{2} \int_{-\infty}^{\infty} e^{-u^{2}} d u=C \sigma \sqrt{2 \pi} \quad\left(\int_{-\infty}^{\infty} e^{-u^{2}} d u=\sqrt{\pi}\right)$
$C=\frac{1}{\sigma \sqrt{2 \pi}}$

The normal distribution

Statistical analysis of repeated measurements
Measurements of X are subject to many small random errors and negligible systematic errors

- Measurements are distributed in accordance with a bell-shaped curve, centered on the true value of X (we assume that a true value exists).
- The mathematical function that describes the bell-shaped curve is called the normal distribution or Gauss function:
$e^{-\frac{1}{2}\left(\frac{x-X}{\sigma}\right)^{2}}$ \square
coordinate transformation $x=r \cos \theta, y=r \sin \theta$

$$
\begin{gathered}
I^{2}=\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta=2 \pi \int_{0}^{\infty} e^{-r^{2}} r d r=\left.2 \pi\left(\frac{e^{-r^{2}}}{-2}\right)\right|_{0} ^{\infty} \\
I^{2}=\pi \\
I=\sqrt{\pi}
\end{gathered}
$$

Normal distribution: True value X and width σ

Normal distribution: Expected standard deviation Expected standard deviation for the distribution $f(x)$:

$$
\sigma_{x}^{2}=\int_{-\infty}^{\infty}(x-X)^{2} f(x) d x
$$

$$
\sigma_{x}^{2}=\int_{-\infty}^{\infty}(x-X)^{2} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-X}{\sigma}\right)^{2}} d x
$$

$$
\text { change of variables } u=\frac{1}{\sqrt{2}}\left(\frac{x-X}{\sigma}\right)
$$

$$
\sigma_{x}^{2}=\int_{-\infty}^{\infty} 2 \sigma^{2} u^{2} \frac{1}{\sigma \sqrt{2 \pi}} e^{-u^{2}} \sigma \sqrt{2} d u=-\frac{\sigma^{2}}{\sqrt{\pi}}\left(\int_{-\infty}^{\infty}\left(-2 u e^{-u^{2}}\right) u d u\right)
$$

$$
\sigma_{x}^{2}=-\frac{\sigma^{2}}{\sqrt{\pi}}\left(\left.\left(u e^{-u^{2}}\right)\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} e^{-u^{2}} 1 d u\right) \text { (integration by parts) }
$$

$$
\left(\left.u e^{-u^{2}}\right|_{-\infty} ^{\infty}=0 \text { odd function; } \int_{-\infty}^{\infty} e^{-u^{2}} d u=\sqrt{\pi}\right) \quad \sigma_{x}^{2}=\sigma^{2}
$$

Normal distribution: expected average

Expected average for the distribution $f(x): \overline{\mathrm{x}}=\int_{-\infty}^{\infty} x f(x) d x$
(Note that for symmetry reasons, the average should be X)
$\overline{\mathrm{x}}=\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{\infty} x \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-X}{\sigma}\right)^{2}} d x$
change of variables $u=\frac{1}{\sqrt{2}}\left(\frac{x-X}{\sigma}\right)$
$\overline{\mathrm{x}}=\int_{-\infty}^{\infty}(\sigma \sqrt{2} u+X) \frac{1}{\sigma \sqrt{2 \pi}} e^{-u^{2}} \sigma \sqrt{2} d u=\frac{1}{\sqrt{\pi}}\left(\int_{-\infty}^{\infty} \sigma \sqrt{2} u e^{-u^{2}} d u+X \int_{-\infty}^{\infty} e^{-u^{2}} d u\right)$
$\left(\int_{-\infty}^{\infty} u e^{-u^{2}} d u=0\right.$ odd function; $\left.\int_{-\infty}^{\infty} e^{-u^{2}} d u=\sqrt{\pi}\right)$

$$
\bar{x}=X
$$

Normal distribution:

Probability that $X-\sigma \leq X \leq X+\sigma$
Probability that a measurement will fall in $X-\sigma \leq x \leq X+\sigma$:
$P($ within $\sigma)=\int_{X-\sigma}^{X+\sigma} f(x) d x$
$P($ within $\sigma)=\int_{X-\sigma}^{X+\sigma} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-X}{\sigma}\right)^{2}} d x$
change of variables $u=\left(\frac{x-X}{\sigma}\right)$
$P($ within $\sigma)=\int_{-1}^{1} \frac{1}{\sigma \sqrt{2 \pi}} e^{-u^{2} / 2} \sigma d u=\frac{1}{\sqrt{2 \pi}} \int_{-1}^{1} e^{-u^{2} / 2} d u \approx 0.68$
$P($ within $t \sigma)=\frac{1}{\sqrt{2 \pi}} \int_{-t}^{t} e^{-u^{2} / 2} d u$

robability that a measurement falls within
t standard deviation of the true value

This function is often referred to as the error function $\operatorname{erf}(t / \sqrt{2})$

How to report uncertainties

N measurements x_{1}, \ldots, x_{N} of a quantity X :
value of $\mathrm{x}=\bar{x} \pm \sigma_{\bar{x}} \quad\left(68 \%\right.$ of measurements fall in $\left.\bar{x} \pm \sigma_{\bar{x}}\right)$
value of $\mathrm{x}=\bar{x} \pm 2 \sigma_{\bar{x}}$ (95\% of measurements fall in $\bar{x} \pm 2 \sigma_{\bar{x}}$)
When reporting uncertainties, two quantities should be given :

- a range (interval) and
- the corresponding confidence level

Example: $x=23.07 \pm 0.02$ at the 95% confidence level.
Note: $\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{N}}, \sigma_{\bar{x}} \neq \sigma_{x}$

Acceptability of a measurement

Measurements of a quantity x : $\quad x_{\text {best }} \pm \sigma$

$$
\begin{aligned}
\text { where } & x_{\text {best }} \text { is our best estimate of } x, \\
& \sigma \text { is the standard deviation. }
\end{aligned}
$$

Expected value is $x_{\text {exp }}$ (known from theory or reference measurements)

$$
x_{\text {exp }} \text { differs from } x_{\text {best }} \text { by } t \text { standard deviations: } t=\frac{\left|x_{\text {best }}-x_{\text {exp }}\right|}{\sigma}
$$

The probability that a measurement fall outside $t \sigma$ is P (outside $t \sigma$)
If this probability is unreasonably small, the measurement is unacceptable.
If P (outside $t \sigma$) is less than some chosen level,
the agreement is unacceptable at that level.
Example: If P (outside $t \sigma$) $<5 \%$, the agreement is unacceptable at the 5% level

Best estimates for X and σ

Best estimates of X and σ based on the N measured values.
The N values are normally distributed
$P\left(x_{1}\right)=P\left(x \in\left[x_{1}, x_{1}+d x_{1}\right]\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x_{1}-X}{\sigma}\right)^{2}} d x_{1}$
$P\left(x_{1}\right) \propto \frac{1}{\sigma} e^{-\frac{1}{2}\left(\frac{x_{1}-X}{\sigma}\right)^{2}}$
$P\left(x_{N}\right) \propto \frac{1}{\sigma} e^{-\frac{1}{2}\left(\frac{x_{N}-X}{\sigma}\right)^{2}}$
The probability that we observed the whole set x_{1}, \ldots, x_{N} is
$P_{X, \sigma}\left(x_{1}, \ldots, x_{N}\right)=P\left(x_{1}\right) \times \ldots \times P\left(x_{N}\right) \propto \frac{1}{\sigma^{N}} e^{-\frac{1}{2} \sum_{i}\left(\frac{x_{i}-X}{\sigma}\right)^{2}}$
The best estimates for X and σ are those values for which $P_{X, \sigma}\left(x_{1}, \ldots, x_{N}\right)$ is maximum (the principle of maximum likelihood)

Best estimates for X and $\sigma^{(2 / 2)}$
$P_{X, \sigma}\left(x_{1}, \ldots, x_{N}\right) \propto \frac{1}{\sigma^{N}} e^{-\frac{1}{2} \sum\left(\frac{x_{i}-X}{\sigma}\right)^{2}}$
The best estimates for X and σ are those values for which $P_{X, \sigma}\left(x_{1}, \ldots, x_{N}\right)$ is maximum Best estimate of $X: X$ for which $\sum_{i}\left(\frac{x_{i}-X}{\sigma}\right)^{2}$ is minimum :
minimum corresponds to $\frac{\partial \sum_{i}\left(\frac{x_{i}-X}{\sigma}\right)^{2}}{\partial X}=0$
$\sum_{i}\left(x_{i}-X\right)=0 \Leftrightarrow \mathrm{X}=\frac{1}{N} \sum_{i} x_{i}$
Best estimate of $\sigma: \sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}} \quad$ (no proof)

Standard deviation of the mean

N measurements x_{1}, \ldots, x_{N} of a quantity x :

- the best estimate of the true value X is $\bar{x}=\frac{x_{1}+\ldots+x_{N}}{N}$
- the uncertainty in this estimate is $\sigma_{\bar{x}}=\sigma_{\mathrm{x}} / \sqrt{\mathrm{N}}$

Many determinations of the average \bar{x}
\bar{x} is normally distributed as the x_{i} :

- the true value for the \bar{x} distribution is X
- the width of the \bar{x} distribution is $\sigma_{\bar{x}}$
$\sigma_{\bar{x}}=\sqrt{\left(\frac{\partial \bar{x}}{\partial x_{1}} \sigma_{x_{1}}\right)^{2}+\ldots+\left(\frac{\partial \bar{x}}{\partial x_{N}} \sigma_{x_{N}}\right)^{2}}=\sqrt{N\left(\frac{1}{N} \sigma_{x}\right)^{2}}=\sigma_{\mathrm{x}} / \sqrt{\mathrm{N}}$
(Measurements of the same quantity $x=>\sigma_{x_{1}}=\ldots=\sigma_{x_{N}}=\sigma_{x}$)

Propagation of uncertainties: Main results

The N measurements of the quantity x are normally distributed about the true value X, with width σ.

We calculate the quantity $q=x+C^{s t}$:
The calculated values of q are normally distributed about the true value $X+C^{s t}$, with width σ.

We calculate the quantity $q=\alpha \times x$:
The calculated values of $\overline{q \text { are normally distributed about the true }}$ value $\alpha \times X$, with width $\alpha \times \sigma$.

Propagation of uncertainties: Main results

Consider measurements of the independent quantities x, y, \ldots, z, normally distributed about their true values X, Y, \ldots, Z, with width $\sigma_{x}, \sigma_{y}, \ldots ., \sigma_{z}$.

We calculate the quantity $q=x+y+\ldots+z$:
The calculated values of q are normally distributed about the true value $X+Y+\ldots+Z$, with width $\sqrt{\sigma_{x}{ }^{2}+\sigma_{y}{ }^{2}+\ldots .+\sigma_{z}{ }^{2}}$.

Combining measurements from two sensors of different accuracies
Sensors A and B, measuring a quantity Z, produce measurements Z_{A} and Z_{B} whose errors have zero mean and variances $\sigma_{\mathrm{A}}{ }^{2}$ and $\sigma_{\mathrm{B}}{ }^{2}$

Can the measurements from A and B be combined to produce a measurement that, on average,
is statistically superior to either of the two original ones?
$\left.\begin{array}{|lll}\mathrm{A} & \sigma_{A} \\ \mathrm{~B} & \sigma_{B}\end{array}\right\} f(A, B)$ with $\sigma_{f}<\sigma_{A}$ and $\sigma_{f}<\sigma_{B}$

Combining measurements ...
We form a weighted measurement $Z_{C}=\alpha Z_{A}+\beta Z_{B}$
Z_{C} estimate of $Z \Rightarrow \beta=1-\alpha$
$Z_{C}=\alpha Z_{A}+(1-\alpha) Z_{B}$
$\Leftrightarrow \sigma_{C}{ }^{2}=\alpha^{2} \sigma_{A}{ }^{2}+(1-\alpha)^{2} \sigma_{B}{ }^{2}$

Minimize $f(\alpha)=\alpha^{2} \sigma_{A}{ }^{2}+(1-\alpha)^{2} \sigma_{B}{ }^{2}$
$\left\{f^{\prime}(\alpha)=0 \Leftrightarrow \alpha=\sigma_{B}{ }^{2} /\left(\sigma_{A}{ }^{2}+\sigma_{B}{ }^{2}\right)\right.$
$f^{\prime \prime}(\alpha)>0$
$\sigma_{C}{ }^{2}=\frac{1}{\sigma_{A}^{-2}+\sigma_{B}^{-2}} \quad \begin{aligned} & Z_{C} \text { has on average a higher accuracy } \\ & \text { (smaller variance) }\end{aligned}$

Combining measurements: Generalization to weighted averages
N separate measurements of the same quantity X

$$
x_{1} \pm \sigma_{1}, x_{2} \pm \sigma_{2}, \ldots, x_{N} \pm \sigma_{N}
$$

The best estimate is: Best estimate uncertainty :

$$
x_{\text {best }}=\frac{\sum_{i=1}^{N} x_{i} / \sigma_{i}^{2}}{\sum_{i=1}^{N} 1 / \sigma_{i}^{2}} \quad \sigma_{\text {best }}^{2}=\frac{1}{\sum_{i=1}^{N} 1 / \sigma_{i}^{2}}
$$

> Statistical treatment of random uncertainties distributed according to the Student t distribution

Student's t distribution

Used in characterizing the mean and the standard deviation of the mean when the sample size is small ($N<20$); the mean and our estimate of the standard deviation are poorly determined.
$t=\frac{\bar{x}-X}{\sigma_{\bar{x}}} ; v=N-1$ (degree of freedom)
Probability density function $(x)=\frac{\Gamma((v+1) / 2)}{\sqrt{v \pi} \Gamma(v / 2)\left(1+x^{2} / v\right)^{(v+1) / 2}}$
where Γ is the Gamma function

The Student t distribution depends on $N(v=N-1)$ and converges to the Gaussian distribution as N goes to infinity.

Statistical treatment of random uncertainties distributed according to the Binomial distribution

Apply when the result is one of a small number of possible final states such as "heads or tails" process. A Process which gives discrete values.

Student's t-test

Test the agreement between observed and expected mean N measurements having mean \bar{x} and std deviation σ_{x}
Test the hypothesis that the true value is X.

	Confidence interval	
$N-1$	95%	99%
10	2.28	3.17
120	1.98	2.62
∞	1.96	2.58

t follows a Student's t distribution
where the samples of X are normally distributed
with parameter the number of degrees of freedom $\cong N-1$
$X=\bar{x} \pm t \sigma_{x} / \sqrt{N}$ at the confidence level $P_{\text {Student }}\left(\right.$ within $\left.t \sigma_{x} / \sqrt{N}\right)$
The probability that the true value X lies
within the limit is $P_{\text {Student }}\left(\right.$ within $\left.t \sigma_{x} / \sqrt{N}\right)$

The Bernoulli process

- An experiment often consists of repeated trials, each with two possible outcomes (success or failure)
- Application example: testing of items as they come off an assembly line, where each test indicates a defective or a nondefective item.
- A Bernoulli process possesses the following properties
- The experiment consists of n repeated trials
- Each trial results in an outcome that may be classified as a success or a failure
- The probability of success p remains constant from trial to trial
- The repeated trials are independent
- The random variable described by a Bernoulli process follows a binomial distribution

Binomial distribution

$P_{\text {Binomial }}(v$ successes in n trials $)=B_{n, p}(v)$

$$
=\frac{n(n-1) \ldots(n-v+1)}{1 \times 2 \times \ldots \times v} p^{v} q^{n-v}
$$

where
p is the probability of success in one trial
$q=1-p$ is the probability of failure in one trial

Properties
$\bar{v}=\sum_{v=0}^{\infty} v B_{n, p}(v)=n p$
$\sigma_{v}=\sqrt{n p(1-p)}=\sqrt{n p q}$

Bernoulli process example

Three items are selected at random from a manufacturing process, inspected, and classified as defective or nondefective.
A defective item is designed a success. The number of successes is a random variable X.
The items are selected independently from a process that produces 25% defectives $(p=0.25)$.

Outcome	\underline{x}	$P(N D N)=P(N) P(D) P(N)=\frac{3}{4} \frac{1}{4} \frac{3}{4}=\frac{9}{64}$								
NNN	0									
NDN	1	x		1	2	3	The binomial distribution of the discrete random variable x			
DNN	1									
NDD	2	$f(x)$	64	64	64	$\overline{64}$				
DND	2									
DDN	2	$B_{n=3, p=0.25}(x=1)=3 \times 0.25^{1} \times(1-0.25)^{3-1}=\frac{27}{64}$								
DDD	3									

The sources of uncertainties: Statistical uncertainties

Number of counts in a detector per unit time for a random process
=> Statistical uncertainties arise from statistical fluctuations (random process) in the collections of numbers of counts over finite intervals of time.
Not related to a lack of precision in the measuring instruments.

Poisson distrilbution
$P_{\text {Poisson }}(v$ counts in a given interval $t)=P_{\mu t}(v)$
$=e^{-\mu t} \frac{(\mu t)^{v}}{v!}$
Properties
μ is the average number of outcomes per unit time
$\sigma_{\mu t}=\sqrt{\mu t}$

Statistical treatment

Usually cannot repeat measurements:
Estimate of the standard deviation of a single measurement is taken as $\sigma=\sqrt{v}$

If we make one measurement of the number of events in a defined time interval and get the answer v

$$
v \pm \sqrt{v}
$$

Chi-square test

N measurements of the same quantity $X \Rightarrow$ estimate \bar{x}, σ_{x} Hypothesis: N measurements follow a Gaussian distribution Divide the N measurements into bins

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| Bin | Observed | Expected $\left(N \times P_{\text {Gauss }}\right)$ | |
| 1 | 5 | 6 | |
| 2 | 10 | 12 | (see figure next slide) |
| 3 | 11 | 12 | |
| 4 | 1 | 6 | |

Difference $^{\text {Observed }_{k}}-$ Expected $_{k} \rightarrow 0$ if Hypothesis is correct
Observed $_{k}$ is the result of a counting experiment : error $=\sqrt{\text { Expected }_{k}}$
Form the test $: \frac{\left(\text { Observed }_{k}-\text { Expected }_{k}\right)}{\sqrt{\text { Expected }_{k}}} ; \chi^{2}=\sum \frac{\left(\text { observed }_{k}-\text { Expected }_{k}\right)^{2}}{\text { Expected }_{k}}$
χ^{2} indicator of the agreement between the observed and expected distributions

Chi-square distribution

$P_{\text {Chi-square }}(x, d)=\frac{(1 / 2)^{d / 2}}{\Gamma(d / 2)} x^{d / 2-1} e^{-x / 2}$
where
d is the number of degrees of freedom
Γ is the Gamma function

Properties

$\bar{x}=d$
$\sigma=\sqrt{2 d}$

Chi-square: Summary
Test for the type of the parent distribution
$\chi^{2}=\sum_{k=1}^{n} \frac{\left(O_{k}-E_{k}\right)^{2}}{E_{k}}$
where n is the number of bins

Agreement between observed and expected distributions :
$\chi^{2}=0 \quad$ Agreement perfect (unlikely to occur)
$\chi^{2} \leq n \quad$ Agreement acceptable
$\chi^{2} \gg n \quad$ Significant disagreement

Chi-square: Summary

Reduced chi-square χ
\sim^{2}
$\tilde{\chi}=\chi^{2} / d$
where d is the number of degrees of freedom $d=n-c$ n is the number of observations (number of bins)
c is the number of parameters to be calculated
Uncertainty due to systematic errors

Chi -square probability
$P_{\text {Chi-square }}\left(\tilde{\chi}^{2} \geq \chi_{\text {observed }}^{\sim}{ }^{2}\right)<\mathrm{X} \%$ significance level
reject the expected distribution at the $\mathrm{X} \%$ significance level (usually $\mathrm{X} \%=5 \%$ or 1%)

Uncertainty due to systematic error

Since systematic error is constant for repeated measurements, the uncertainty due to systematic error must be estimated.

The systematic uncertainty estimate can be based on:
-Inter-laboratory test
-Comparison against standards
-Comparison of independent measurements (different principles)
-Calibration reports
-Engineering judgment
B_{95} is an estimate of the systematic error at the 95% confidence level

Note: 'B' stand for bias

Total uncertainty

The American Society of Mechanical Engineers (ASME) standard on measurement uncertainty

Total uncertainty

The total uncertainty in a measurement is the combination of

- uncertainty due to systematic error and
- uncertainty due to random error.

Uncertainty, U, is defined as an interval about the measured value, that has a pre-assigned probability of containing the true value :

$$
\bar{x} \pm U_{95} \text { with } 95 \% \text { confidence }
$$

Uncertainty is associated with an interval about the measurement mean \bar{x}, within which the true value is expected to lie at a given level of confidence

ASME Total uncertainty equation

Under the assumption that the systematic uncertainty component is normally distributed, the uncertainty U with 95% confidence is calculated by

$$
U_{95}=\sqrt{B_{95}^{2}+\left(t_{95} \sigma_{\bar{x}}\right)^{2}}
$$

where
B_{95} is an estimate of the systematic error at the 95% confidence leve $\sigma_{\bar{\gamma}}$ is the standard deviation of the mean
$t_{95}=2$ for normally distributed errors and large degrees of freedom $(N>30)$
t_{95} definition:
Probability of 95% that a measurement falls within $t_{95} \sigma_{\bar{x}}$ of the true value

Uncertainty of a result

-Direct vs. indirect measurement
-Propagation of measurement uncertainties into a result -Uncertainty for the uncertainty of a result

Direct vs. indirect measurement

Direct measurement:
The value of the unknown quantity is the measured quantity (e.g length of an object)

Indirect measurement:

The value of the unknown quantity is obtained by calculation from other measured quantities (e.g. determination of the density of a body from its mass and volume $\rho=m / V$)

The result of an indirect measurement is expressed

$$
\begin{gathered}
\frac{R=f\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{J}\right)}{N_{i}} \\
\text { where } \bar{x}_{i}=1 / N_{i} \sum_{k=1}^{x_{i_{k}}} \text { is the mean of } X_{i} \\
N_{i} \text { the number of measurements of } X_{i}
\end{gathered}
$$

Propagation of uncertainties into a result:
 Independent quantities

The independent and normally distributed quantities x_{1}, \ldots, x_{J} are measured with standard deviations $\sigma_{\bar{x}_{1}, \ldots,} \sigma_{\bar{x}_{J}}$

A result R is calculated from the relation $R=f\left(\bar{x}_{1}, \ldots, \bar{x}_{J}\right)$

The standard deviation of the result R is :

$$
\sigma_{R}=\sqrt{\left(\frac{\partial f}{\partial x_{1}} \sigma_{\bar{x}_{1}}\right)^{2}+\ldots+\left(\frac{\partial f}{\partial x_{J}} \sigma_{\bar{x}_{J}}\right)^{2}}
$$

$$
\begin{aligned}
& \text { Propagation of uncertainty: Linear combination } \\
& R=a_{1} x_{1}+\ldots+a_{J} x_{J} \\
& \sigma_{R}{ }^{2}=E\left((R-\bar{R})^{2}\right)=E\left(\left(\left(a_{1} x_{1}+\ldots+a_{J} x_{J}\right)-\left(a_{1} \mu_{1}+\ldots+a_{J} \mu_{J}\right)\right)^{2}\right) \\
& \text { where } \mu_{i}=E\left(x_{i}\right)=1 / N \sum_{k=1}^{N} x_{i, k} \\
& \text { Particular case of } J=2, R=a_{1} x_{1}+a_{2} x_{2} \\
& \sigma_{R}{ }^{2}=E\left(\left(\left(a_{1} x_{1}+a_{2} x_{2}\right)-\left(a_{1} \mu_{1}+a_{2} \mu_{2}\right)\right)^{2}\right)=E\left(\left(a_{1}\left(x_{1}-\mu_{1}\right)+a_{2}\left(x_{2}-\mu_{2}\right)\right)^{2}\right) \\
& \sigma_{R}{ }^{2}=E\left(\left(a_{1}\left(x_{1}-\mu_{1}\right)\right)^{2}\right)+E\left(\left(a_{2}\left(x_{2}-\mu_{2}\right)\right)^{2}\right)+2 a_{1} a_{2} \underbrace{E\left(\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)\right)}_{\neq 0} \\
& \sigma_{R}{ }^{2}=\left(a_{1} \sigma_{x_{1}}\right)^{2}+\left(a_{2} \sigma_{x_{2}}\right)^{2}+2 a_{1} a_{2} \sigma_{x_{1} x_{2}} \\
& \text { Gendentent quantities equation } \sigma_{R}{ }^{2}=\sum_{i=1}^{J}\left(\left(a_{i} \sigma_{x_{i}}\right)^{2}+2 \sum_{j=i+1}^{J} a_{i} a_{j} \sigma_{x_{i} x_{j}}\right) \\
& \text { For independent quantities } \sigma_{x_{i} x_{j}}=0 \text { and } \sigma_{R}{ }^{2}=\sum_{i=1}^{J}\left(\left(a_{i} \sigma_{x_{i}}\right)^{2}\right)
\end{aligned}
$$

Propagation of uncertainty:
 Dependent quantities

A result R is defined as a function of the quantities x_{1}, \ldots, x_{J}
$R=f\left(x_{1}, \ldots, x_{J}\right)$
where x_{1}, \ldots, x_{J} are measured directly and have standard deviation $\sigma_{x_{1}}, \ldots, \sigma_{x_{J}}$

Two cases

1) R is expressed as a linear combination of $x_{1}, \ldots, x_{J}: R=a_{1} x_{1}+\ldots+a_{J} x_{J}$

$$
\sigma_{R}^{2}=\sum_{i=1}^{J}\left(\left(a_{i} \sigma_{x_{i}}\right)^{2}+2 \sum_{j=i+1}^{J} a_{i} a_{j} \sigma_{x_{i} x_{j}}\right)
$$

2) R is expressed as a general function $f: R=f\left(x_{1}, \ldots, x_{J}\right)$
$\sigma_{R}^{2} \cong \sum_{i=1}^{J}\left(\left(\frac{\partial f}{\partial x_{i}} \sigma_{x_{i}}\right)^{2}+2 \sum_{j=i+1}^{J} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} \sigma_{x_{i} x_{j}}\right.$

Propagation of uncertainty: General function

$$
\begin{aligned}
& R=f\left(x_{1}, \ldots, x_{J}\right) \\
& \sigma_{R}{ }^{2}=E\left(\left(f\left(x_{1}, \ldots, x_{J}\right)-f\left(\mu_{1}, \ldots, \mu_{J}\right)\right)^{2}\right)
\end{aligned}
$$

Taylor development of R in the neighborhood of μ_{1}, \ldots, μ_{J}
$R=f\left(\mu_{1}, \ldots, \mu_{J}\right)+\frac{\partial f}{\partial x_{1}}\left(x_{1}-\mu_{1}\right)+\ldots+\frac{\partial f}{\partial x_{J}}\left(x_{J}-\mu_{J}\right)+\underbrace{\text { higher order terms }}_{\text {neglected }}$
$\sigma_{R}{ }^{2} \cong E\left(\left(\frac{\partial f}{\partial x_{1}}\left(x_{1}-\mu_{1}\right)+\ldots+\frac{\partial f}{\partial x_{J}}\left(x_{J}-\mu_{J}\right)\right)^{2}\right) \quad$ Approximation!
$\sigma_{R}^{2} \cong\left(\frac{\partial f}{\partial x_{1}} \sigma_{x_{1}}\right)^{2}+\ldots+\left(\frac{\partial f}{\partial x_{J}} \sigma_{x_{J}}\right)^{2}+2 \frac{\partial f}{\partial x_{1}} \frac{\partial f}{\partial x_{2}} \sigma_{x_{1} x_{2}}+2 \frac{\partial f}{\partial x_{1}} \frac{\partial f}{\partial x_{3}} \sigma_{x_{1} x_{3}}+\ldots+$
$\sigma_{R}{ }^{2} \cong \sum_{i=1}^{J}\left(\left(\frac{\partial f}{\partial x_{i}} \sigma_{x_{i}}\right)^{2}+2 \sum_{j=i+1}^{J} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} \sigma_{x_{i} x_{j}}\right)$
For independent quantities $\sigma_{x_{i} x_{j}}=0$ and $\sigma_{R}{ }^{2} \cong \sum_{i=1}^{J}\left(\frac{\partial f}{\partial x_{i}} \sigma_{x_{i}}\right)^{2}$

General treatment of non random uncertainties

Multiple test (More than one test is conducted with the same instruments: M repeated tests)

$$
\begin{array}{r}
\sigma_{\bar{R}}=\sigma_{R} / \sqrt{M} \\
\text { Total Uncertainty } U=t \sqrt{\left(\frac{B_{R}}{2}\right)^{2}+\sigma_{\bar{R}}^{2}}
\end{array}
$$

Propagation of uncertainties

The independent quantities x_{1}, \ldots, x_{J} are measured with uncertainties $\Delta x_{1}, \ldots, \Delta x_{J}$
Upper bound of the standard deviation of $f\left(x_{1}, \ldots, x_{J}\right)$ is $\sigma_{f} \leq\left|\frac{\partial f}{\partial x_{1}}\right| \Delta x_{1}+\ldots+\left|\frac{\partial f}{\partial x_{J}}\right| \Delta x_{J}$

Function $f\left(x_{1}, \ldots, x_{J}\right)$ Uncertainty Fractional Uncertainty		
$\sum_{i=1}^{J} x_{i}$ $\sum_{i=1}^{J} \Delta x_{i}$ $\frac{\sum_{i=1}^{J} \Delta x_{i}}{J}$ $\sum_{i=1}^{J} x_{i}$ $\prod_{i=1}^{J} x_{i}$ $\sum_{i=1}^{J} \frac{\Delta x_{i}}{x_{i}} \times \prod_{i=1}^{J} x_{i}$ $\sum_{i=1}^{J} \frac{\Delta x_{i}}{x_{i}}$	These expressions are upper bounds	
x^{n}	$a \Delta x$	$\frac{\Delta x}{x}$

Covariance and correlation

Measure of the extent to which a set

 of points $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$ supports a linear relation between x and y
Covariance in error propagation

N pairs of data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$ are measured to estimate $q(x, y)$

All uncertainties are small

$$
\begin{aligned}
& q_{i}=q\left(x_{i}, y_{i}\right) \cong q(\bar{x}, \bar{y})+\left(\frac{\partial q}{\partial x}\right)_{\bar{x}, \bar{y}}\left(x_{i}-\bar{x}\right)^{(}+\left(\frac{\partial q}{\partial y}\right)_{\bar{x}, \bar{y}}\left(y_{i}-\bar{y}\right) \\
& \Rightarrow \begin{array}{c}
\bar{q}=\frac{1}{N} \sum_{i=1}^{N} q_{i}=\frac{1}{N} \sum_{i=1}^{N}\left(q(\bar{x}, \bar{y})+\left(\frac{\partial q}{\partial x}\right)_{\bar{x}, \bar{y}}\left(x_{i}-\bar{x}\right)+\left(\frac{\partial q}{\partial y}\right)_{\bar{x}, \bar{y}}\left(y_{i}-\bar{y}\right)\right) \\
\bar{q}=q(\bar{x}, \bar{y}) \quad \longrightarrow 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\Rightarrow \sigma_{q}{ }^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(q_{i}-\bar{q}\right)^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(\left(\frac{\partial q}{\partial x}\right)_{\bar{x}, \bar{y}}\left(x_{i}-\bar{x}\right)+\left(\frac{\partial q}{\partial y}\right)_{\bar{x}, \bar{y}}\left(y_{i}-\bar{y}\right)\right)^{2} \\
\sigma_{q}{ }^{2}=\left(\frac{\partial q}{\partial x}\right)^{2} \frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}+\left(\frac{\partial q}{\partial y}\right)^{2} \frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2} \\
\\
\quad+2\left(\frac{\partial q}{\partial x}\right)\left(\frac{\partial q}{\partial y}\right) \frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
\end{array} \\
& \begin{array}{l}
\sigma_{x y}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \quad \text { The covariance of } x \text { and } y \\
\sigma_{q}{ }^{2}=\left(\frac{\partial q}{\partial x}\right)^{2} \sigma_{x}{ }^{2}+\left(\frac{\partial q}{\partial y}\right)^{2} \sigma_{y}{ }^{2}+2\left(\frac{\partial q}{\partial x}\right)\left(\frac{\partial q}{\partial y}\right) \sigma_{x y} \\
\text { This equation gives the standard deviation } \sigma_{q} \text { whether or not } \\
\text { the measurements are independent or normally distributed. }
\end{array}
\end{aligned}
$$

Upper bound of the error

$$
\sigma_{q}^{2}=\left(\frac{\partial q}{\partial x}\right)^{2} \sigma_{x}^{2}+\left(\frac{\partial q}{\partial y}\right)^{2} \sigma_{y}^{2}+2\left(\frac{\partial q}{\partial x}\right)\left(\frac{\partial q}{\partial y}\right) \sigma_{x y}
$$

Applying the Cauchy - Schwarz inequality $\left|\sigma_{x y}\right| \leq \sigma_{x} \sigma_{y}$

$$
\Rightarrow \sigma_{q}^{2} \leq\left(\frac{\partial q}{\partial x}\right)^{2} \sigma_{x}^{2}+\left(\frac{\partial q}{\partial y}\right)^{2} \sigma_{y}^{2}+2\left(\frac{\partial q}{\partial x}\right)\left(\frac{\partial q}{\partial y}\right) \sigma_{x} \sigma_{y}
$$

$$
\sigma_{q}^{2} \leq\left(\left|\frac{\partial q}{\partial x}\right| \sigma_{x}+\left|\frac{\partial q}{\partial y}\right| \sigma_{y}\right)^{2}
$$

$$
\sigma_{q} \leq\left|\frac{\partial q}{\partial x}\right| \sigma_{x}+\left|\frac{\partial q}{\partial y}\right| \sigma_{y}
$$

Proof for the upper bound $\delta q \leq\left|\frac{\partial q}{\partial x}\right| \delta x+\left|\frac{\partial q}{\partial y}\right| \delta y$

Coefficient of linear correlation

The extent to which a set of measurements
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)$ of two variables supports a linear relation between x and y is measured by the linear correlation coefficient:

$$
\begin{array}{c:ccc}
r & -1 & 0 & +1 \\
\hdashline \text { The points lie to } & \text { YES } & \text { NO } & \text { YES }
\end{array}
$$

Suppose that the two variables x and y satisfy a linear relation of the form:

$$
y=A x+B
$$

$$
\Rightarrow\left\{\begin{array}{l}
y_{i}=A x_{i}+B \\
\bar{y}=A \bar{x}+B
\end{array} \Rightarrow y_{i}-\bar{y}=A\left(x_{i}-\bar{x}\right)\right.
$$

$$
r=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}}}=\frac{A}{|A|}= \pm 1
$$

In General, $-1 \leq r \leq 1$

The Schwarz inequality $\left|\sigma_{x y}\right| \leq \sigma_{x} \sigma_{y}$ implies
$|r|=\left|\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}\right| \leq 1$

Quantitative significance of r

The probability $\operatorname{Prob}_{N}\left(|r| \geq r_{0}\right)$ that N measurements of two uncorrelated variables x and y would produce a correlation coefficient with $|r| \geq r_{0}$

N	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
3	100	94	87	81	74	67	59	51	41	29	0
6	100	85	70	56	43	31	21	12	6	1	0
10	100	78	58	40	25	14	7	2	0.5		0
20	100	67	40	20	8	2	0.5	0.1			0
50	100	49	16	3	0.4						0

Example: The probability that 20 measurements ($\mathrm{N}=20$) of two uncorrelated variables would yield $|r|>0.5$ is 2%. Thus, if 20 measurements gave $r=0.5$, we would have significant evidence of a linear correlation between the two variables (the correlation is significant at the 2% level)

