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Outline
• Error analysis main goals
• Error types and origins

– Random vs. systematic errors
– Instrumental uncertainties, statistical uncertainties, miscalibration

errors
• Uncertainty due to random errors

– Gaussian (normal) distribution
– Student’s t distribution
– Binomial distribution
– Poisson distribution

• Uncertainty due to systematic errors
• Total uncertainty
• Uncertainty of a result
• Covariance and correlation

Basic concepts and terms
• Variables

– Experimental tests are performed to answer a question. 
Once the question is defined, we need to identify the 
relevant process parameters and variables. Variables are 
quantities that influence the test.

– An independent variable can be changed independently 
of other variables

– A dependent variable is affected by changes in one or 
more other variables.

• Controlled variables
– A variables is controlled if it can be held at a constant 

value or at some prescribed condition during a 
measurement.

Basic concepts and terms
• Uncontrolled variables

– Variables that are not or cannot be controlled during 
measurement, but affect the value of the variable 
measured. 

– Their influence can confuse the clear relation between 
cause and effect in a measurement.
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Effect of uncontrolled variables:
-Interference

impose a false trend
-Noise

increase data scatter
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interference

Signal +
noise
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Basic concepts and terms
• Measurable Quantity

– A property of phenomena, bodies, or substances that can 
be expressed quantitatively (e.g. length, mass, time…)

• Measurement
– The process of finding the value of a quantity.

• True value of a measurable quantity
– The actual value of the quantity being measured

• Measurement error
– The deviation of the measurement from the true value

• Uncertainty
– Interval within which the true value of the measured 

quantity lies with a given probability

Errors
• Errors are not mistakes

– It is impossible to completely eliminate them.

• Repeat the same measurements several times
– The spread in your measured values gives a valuable 

indication of the uncertainty in your measurements 
(take a sample). Only valid for random errors.

• Type of errors: random / systematic

• Source of errors: instrumental errors, statistical 
errors, miscalibration

Error and uncertainty
True 
value

True value: Actual value of the parameter being measured
Error: Single value which cannot be known exactly; idealized concept

Individual 
measurement

Error

True 
value

Error

Uncertainty

Uncertainty

Uncertainty: Interval that has a pre-assigned probability of containing 
the true value; cannot be used to correct a measurement result

Error analysis main goals

All measurements are subject to uncertainties

=> Error analysis is the study and evaluation of 
these uncertainties

-How large are uncertainties?
-How to reduce uncertainties?
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Population and sample

Population

Sample

When the sample is not representative of the entire 
population, the sample is said to be biased and can lead to 

wrong statements about the population.

Samples must be chosen so that they are 
representative of the population

Population: the set of all 
possible measurements 
of a parameter

Sample: the set of 
individual measurements 
of a parameter

Random and systematic errors

Random: small
Systematic: small

Random: small
Systematic: large 

Random: large
Systematic: small

Random: large
Systematic: large

Accurate
and precise

Not accurate 
but precise

Not accurate 
not precise

Accurate, 
not precise

The sources of uncertainties: 
Instrumental uncertainties

Fluctuations in readings due to imperfection in the 
equipment (lack of precision), surrounding noise, 

etc.

Examples: 
-Number of bits used in an ADC
-Fluctuations in the power supply
-Effect of cables
-Effect of thermal noise (Johnson noise)

The sources of uncertainties: 
Statistical uncertainties

Origin
• Statistical uncertainties arise from statistical fluctuations 
(random process) in the collections of numbers of counts 
over finite intervals of time. 
• Not related to a lack of precision in the measuring 
instruments!
Properties
• The standard deviation is the root of the mean:
• The observed values are distributed according to a 
Poisson distribution.

µσ =

Number of counts in a detector per unit time for 
a random process (e.g. photons hitting a 
detector, shot noise in electronic device)
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Statistical fluctuations in the 
number of counts

49=N 53=N

The sources of uncertainties: 
Systematic errors

• Difficult to detect; check the measuring 
device against a device known to be more 
reliable.

• Systematic uncertainties cannot be treated 
statistically; random uncertainties can be 
treated statistically.

• Most common causes of systematic errors: 
imperfect calibration corrections, 
imperfect data acquisition systems, 
imperfect data reduction techniques

Uncertainty due to 
random errors

- The Gaussian distribution
- The Student’s t distribution
- The Poisson distribution 
- The Chi-square distribution

Statistical treatment of 
random uncertainties 

distributed according to the 
Gaussian distribution



5

Statistical treatment of random 
uncertainties: Main results

The best estimate of the quantity X

The sample standard deviation

The standard deviation of the mean

The value of X
(Expect 95% of any measurements
of X to fall in the range               )
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results that would be obtained if the number 
of measurements becomes infinitely large
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The limiting 
distribution is a 

theoretical construct 
that can never be 
measured exactly.
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The normal distribution
Statistical analysis of repeated measurements

• Measurements are distributed in accordance with 
a bell-shaped curve, centered on the true value of 
X (we assume that a true value exists).
• The mathematical function that describes the 
bell-shaped curve is called the normal distribution 
or Gauss function:
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Normal distribution: 
True value X and width σ
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Probability that a measurement falls within
t standard deviation of the true value
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Best estimates for X and σ
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Combining measurements from two 
sensors of different accuracies
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random uncertainties 

distributed according to the 
Student t distribution
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Student’s t distribution
Used in characterizing the mean and the standard 

deviation of the mean when the sample size is 
small (N < 20); the mean and our estimate of the 

standard deviation are poorly determined.

The Student t distribution depends on N (ν = N - 1) and 
converges to the Gaussian distribution as N goes to infinity.
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Test the agreement between observed and expected mean

Statistical treatment of 
random uncertainties 

distributed according to the 
Binomial distribution

Apply when the result is one of a small number of 
possible final states such as “heads or tails” process.

A Process which gives discrete values.

The Bernoulli process
• An experiment often consists of repeated trials, each 

with two possible outcomes (success or failure)
– Application example: testing of items as they come off an 

assembly line, where each test indicates a defective or a 
nondefective item. 

• A Bernoulli process possesses the following properties
– The experiment consists of n repeated trials
– Each trial results in an outcome that may be classified as a 

success or a failure
– The probability of success p remains constant from trial to trial
– The repeated trials are independent

• The random variable described by a Bernoulli process 
follows a binomial distribution
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Properties

 trialone in failure ofy probabilit  theis  1 
 trialone in success ofy probabilit  theis   

where
...21

1...1                                                  

 trials in successes 

0
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ν
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Binomial distribution Bernoulli process example

( ).0.25 defectives 25%
 produces that processa  fromtly independen selected are items The

.  variablerandoma 
 is successes ofnumber  The success.a  designed is item defective A

 ve.nondefectior  defective as classified and inspected,
process, ingmanufactura  from randomat  selected are items Three

=p

X

Outcome     x
NNN 0
NDN 1
NND 1
DNN 1
NDD 2
DND 2
DDN 2
DDD 3

( ) ( ) ( ) ( )
64
9

4
3

4
1

4
3

=== NPDPNPNDNP

x
( )xf

0     1     2     3

64
27

64
27

64
9

64
1

The binomial distribution 
of the discrete random 
variable x

( ) ( )
64
2725.0125.031 131

25.0,3 =−××== −
== xB pn

Statistical treatment of 
random uncertainties 

distributed according to the 
Poisson distribution

The sources of uncertainties: 
Statistical uncertainties

Number of counts in a detector per unit 
time for a random process
=> Statistical uncertainties arise from 
statistical fluctuations (random process) in 
the collections of numbers of counts over 
finite intervals of time. 
Not related to a lack of precision in the 
measuring instruments.
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Poisson distribution
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µσ
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νν

µ

ν
µ

µ
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unit timeper  outcomes ofnumber  average  theis 
Properties

!
                                                   

 interval givena  in counts 

Statistical treatment
Usually cannot repeat measurements:
Estimate of the standard deviation of a single 
measurement is taken as νσ =

νν ±

If we make one measurement of the number of 
events in a defined time interval and get the 

answer ν

Gaussian approximation to the 
Poisson distribution

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1
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0.25

x

Po
is

so
n 

D
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µ = 3

Notes:
-The Poisson distribution is only defined at integer values (number of
counts).
-The Gauss distribution is the limiting case for the Poisson distribution 
as µ becomes large.

0 5 10 15 20 25 30
0

0.05

0.1

x

Po
is

so
n 

D
is

tri
bu
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n

Poisson µ = 15
Gauss   µ = 15, σ  = µ0.5

Poisson
Gauss

Statistical treatment of 
random uncertainties 

distributed according to the 
Chi-square distribution
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Chi-square test

bins into tsmeasuremen   theDivide
ondistributi Gaussiana follow  tsmeasuremen  :Hypothesis

 , estimatequantity  same  theof tsmeasuremen 

N
N

xXN xσ⇒

Bin Observed Expected
1 5 6
2 10 12
3 11 12
4 1 6

( )GaussPN ×

k
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   ; : test  theForm

 error :experiment counting a ofresult   theis  
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(see figure next slide)

Gauss distribution

Poisson distribution
of events in each bin
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Chi-square distribution
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squareChi
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Properties

function Gamma  theis 
freedom of degrees ofnumber   theis 

 where

             
2/

2/1 , 2/12/
2/

=

=

Γ

Γ
= −−

−

σ Note: Degrees of freedom corresponds 
to the number of remaining choices

Chi-square: Summary
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occur) to(unlikely perfect Agreement           0
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Test for the type of the parent distribution
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1%)or  5%  X%(usually 
level cesignifican X% at theon distributi expected reject the

level cesignifican X%       

yprobabilit square-Chi

calculated be  toparameters ofnumber   theis 
bins) of(number  nsobservatio ofnumber   theis 
 freedom of degrees ofnumber   theis  where

/

 square-chi Reduced
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χχ

χχ
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Chi-square: Summary (2/2)

Uncertainty due to 
systematic errors

Uncertainty due to 
systematic error

 level confidence 95% at the         
error systematic  theof estimatean  is 95B

95B

Since systematic error is constant for repeated measurements, 
the uncertainty due to systematic error must be estimated.

The systematic uncertainty estimate can be based on:
-Inter-laboratory test
-Comparison against standards
-Comparison of independent measurements (different principles)
-Calibration reports
-Engineering judgment
…

Note: ‘B’ stand for bias

Total uncertainty

The American Society of Mechanical Engineers (ASME) 
standard on measurement uncertainty
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Total uncertainty

                                      
: value true thecontaining ofy probabilit assigned-pre a hasthat 

 value,measured about the intervalan  as defined is , y,Uncertaint

error. random  toduey uncertaint  
 anderror  systematic  toduey uncertaint  

ofn combinatio  theist measuremen ain y uncertaint  totalThe

U

•
•

confidence 95%  with 95Ux ±
Uncertainty is associated with an 
interval about the measurement 
mean      ,  within which the true 
value is expected to lie at a given 
level of confidence

x
True 
value

Uncertainty

x

ASME Total uncertainty equation

30)( freedom of degrees large and errors ddistributenormally for  2
mean  theofdeviation  standard  theis    

 level confidence 95% at theerror  systematic  theof estimatean  is   
where

95

95

>= Nt
σ
B

x

( )295
2

9595 xtBU σ+=

Under the assumption that the systematic uncertainty 
component is normally distributed, the uncertainty U with 
95% confidence is calculated by 

definition: 
Probability of 95% that a measurement falls within              of the true valuext σ95

95t

Uncertainty of a 
result

•Direct vs. indirect measurement
•Propagation of measurement uncertainties into a result
•Uncertainty for the uncertainty of a result

Direct vs. indirect measurement
Direct measurement: 
The value of the unknown quantity is the measured quantity (e.g.
length of an object)

Indirect measurement: 
The value of the unknown quantity is obtained by calculation from 
other measured quantities (e.g. determination of the density of a 
body from its mass and volume                )Vm /=ρ

( )

ii

i

N

k
iii

J

XN

XxNx

xxxfR
i

k

 of tsmeasuremen ofnumber   the            

 ofmean   theis /1   where

,...,,                       
expressed ist measuremenindirect an  ofresult  The

1

21

∑
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Propagation of uncertainties 
into a result:

Independent quantities
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Propagation of uncertainty:
Dependent quantities
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Propagation of uncertainty: Linear combination

( )( ) ( ) ( )( )( )
( )

( ) ( )( )( ) ( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )

( ) ( )

( )

( )( )  and  0 quantitiest independenFor 

2    equation General

2

2

 

  ,2 of case Particular

/1   where

......

...

1

22

1 1

22

21
2

2
2

1
2

quantitiesdependent   0
221121

2
222

2
111

2

2
222111

2
22112211

2
2211

1
,

2
1111

22

11

2121

∑

∑ ∑

∑

=

= +=

≠

=

==

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=

++=

−−+−+−=

−+−=+−+=

+==

==

++−++=−=

++=

J

i
xiRxx

J

i

J

ij
xxjixiR

xxxxR

R

R

N

k
kiii

JJJJR

JJ

iji

jii

a

aaa

aaaa

xxEaaxaExaE

xaxaEaaxaxaE

xaxaRJ

xNxE

aaxaxaERRE

xaxaR

σσσ

σσσ

σσσσ

µµµµσ

µµµµσ

µ

µµσ

444 3444 21

Propagation of uncertainty: General function
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Uncertainty of a result 
(independent quantities)

2
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2
ty    UncertainTotal R

RBtU σ+⎟
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Single test (One test is conducted with the same instruments) 

Multiple test (More than one test is conducted with the same 
instruments: M repeated tests) 
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General treatment of 
non random uncertainties

Propagation of uncertainties
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These expressions 
are upper bounds

Covariance and correlation

Measure of the extent to which a set 
of points {(x1,y1),…,(xN,yN)} supports 

a linear relation between x and y
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Covariance in error propagation
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Coefficient of linear correlation

The extent to which a set 
of measurements 
(x1,y1),…,(xN,yN) of two 
variables supports a 
linear relation between x
and y is measured by the 
linear correlation 
coefficient:
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Example: The probability that 20 measurements (N=20) of two uncorrelated 
variables would yield |r|>0.5 is 2%. Thus, if 20 measurements gave r=0.5, we would 
have significant evidence of a linear correlation between the two variables (the 
correlation is significant at the 2% level) 


