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Pollen forecasting is of increasing interest as a way to help the general public avoid contact with allergy-
inducing pollen. It was recently reported that the dynamics underlying pollen concentration series is very
similar to that of low-dimensional deterministic chaos, thus opening up new avenues of development in local
pollen forecasting. Our analysis of hourly cedar pollen series for two seasons showed evidence of a small
degree of determinism underlying the pollen time-series dynamics. However, we could not confirm that our
pollen series was generated by a low-dimensional chaotic system. The nearest-neighbor method using local
constant prediction applied to hourly pollen forecasting with a 1-h lead time was effective for small to medium
pollen variations, but failed to reproduce large and intermittent pollen bursts. The performance of the nearest-
neighbor model was significantly improved by applying a nonlinear filter to the source dataset. Standard
time-series techniques such as neural networks did not improve upon these results. The difficulty in fully
characterizing and accurately forecasting the pollen series was thought to originate in the nonstationarity of the
series and in the large and intermittent pollen bursts that were found to have no apparent time structure. Thus
the dynamics of hourly pollen series is probably not strongly tied to a low-dimensional chaotic system.
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I. INTRODUCTION

Cedar pollen is known to be a source of potent allergens
and as such has attracted interest in recent years. In Japan,
cedar trees(Crytomeria japonica)have been extensively cul-
tivated since World War II and used as lumber for construc-
tion nationwide. Airborne cedar pollen has become one of
the major sources of allergens in the ambient air and is re-
ported to be the main cause of pollinosis[1]. Today, more
than one in ten inhabitants of the Kanto region are reported
to suffer from this condition[2]. The medical community is
clear in their advice that the most effective way to prevent
pollinosis is to avoid inhaling allergy-inducing pollen.
Knowledge of current and projected pollen concentrations
would enable a person to take precautionary measures such
as wearing a mask or taking appropriate medication. The
ability to accurately predict the spatio-temporal variations in
airborne pollen could be used to provide allergy sufferers
with pollen alerts.

Unfortunately the problem of pollen forecasting is a very
complex one[3,4], as it involves the simulation of time-
varying three-dimensional concentrations over very large ar-
eas s,100 kmd, which is an inherently high-dimensional
system involving many interacting variables[5]. A different
approach to forecasting short-range pollen variations near a
pollen observation station could come from time-series fore-
casting techniques. It has been reported that pollen series
dynamics can be described as low-dimensional deterministic
chaos[6–9], thus opening the way for short-range forecasts
using nonlinear forecasting techniques such as artificial neu-
ral network models.

In this paper, we investigated hourly pollen series for two
seasons with the aim of characterizing the pollen series dy-

namics and assessing the short-range forecast capability of
time-series techniques. We first describe the pollen concen-
tration measurement procedure and the relationship between
a pollen series and a standard meteorological parameter se-
ries. We then analyze the pollen series using linear and non-
linear analysis techniques, searching for evidence of deter-
minism. Finally, we report the forecast performance obtained
with the nearest-neighbor prediction method and discuss pre-
viously reported results.

II. POLLEN AND METEOROLOGICAL DATA

The pollen concentration data were collected using an au-
tomatic pollen sampler, KH3000, from Yamato Corporation
[10]. The device was placed about 10 meters above the
ground on the roof of the Forestry and Forest Products Re-
search Institute of Japan in Hachioji, Tokyo(139.2829 deg.
east and 35.6422 deg. west) and was operated by T.
Yokoyama for two successive years, 2000 and 2001. The
measurement site is close to major cedar plantations located
in the mountainous region west of Tokyo. The automatic
pollen sampler used is of the particle counter type. In this
type of sampler, a defined volume of air is circulated through
a fine pipe that is intersected by a laser beam. When a par-
ticle passes through the laser beam, a scattered signal is de-
tected whose intensity is related to particle size and optical
index. In the KH3000, two laser beams and their respective
detectors are used to compare scattered intensities from the
same particle but measured at different angles. If the particle
is perfectly spherical and homogeneous, the two intensities
will be the same. It is known that Japanese cedar pollen
grains are spherical with a diameter of about 30µm, so this
method allows for a selective particle count. Only spherical
particles with a similar optical index are counted as cedar
pollen grains. Although this device is better than a standard
particle counter, it cannot completely distinguish between
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pollen types, because all spherical particles that are the same
size as cedar pollen grains and with a similar optical index
are counted as cedar pollen grains. We only used data col-
lected during the months of February and March, which is
when the amount of cedar pollen greatly surpasses that of all
other pollen types in this area. The sampling time was 1 h,
the total air flow was 0.246 m3, and the concentration was
recorded in grains per m3.

The meteorological data we used were collected at a
height of 10 meters at a nearby meteorological station oper-
ated by the same institute. The distance between the pollen
sampler and the station was less than 50 meters. The station
takes an hourly record of ambient air temperature, average
and maximum wind speed and wind direction, relative hu-
midity, sunshine duration, and precipitation.

For the months of February and March of 2000 and 2001,
the mean(standard deviation) pollen concentrations were
240 (720) and 125s350d grains/m3 and the mean tempera-
tures were 4.8(5.4) and 5.4(5.6) °C, respectively. Table I
shows the linear correlation coefficients between the meteo-
rological parameters and the pollen concentration. We found
high positive correlation values with the temperature and the
wind speed. The highest correlations were obtained for the
ambient temperature and the maximum wind speed. We also
noted negative correlations with the relative humidity and
precipitation amount. The negative correlation with precipi-
tation is explained by the washout effect that rain has on the
atmosphere, usually modeled as an exponential decay over
time [11,5]. The effect of the relative humidity is more dif-
ficult to determine as humidity is correlated with precipita-
tion and yet also strongly anticorrelated with ambient tem-
perature(see Table I). In the literature, the flowering of some
species is often described as being induced by rising tem-
perature and falling humidity[12]. Cedar trees are probably
affected in a similar way, with falling humidity leading to an
increase in the pollen emission rate and consequently raising
the airborne pollen concentration too. Another explanation
for the effect of relative humidity might be that the average
pollen grain mass increases with relative humidity because
of water absorption by the hydrophilic pollen grains. As
heavy particles settle faster in the atmosphere, the lifetime
(suspension time in the atmosphere) of the pollen grains
would thus decrease and therefore the observed concentra-
tion would decrease as well.

III. POLLEN TIME-SERIES ANALYSIS

Figure 1 shows the pollen time series for the years 2000
and 2001. The series shown in Fig. 1 does not vary about a
fixed level (constant mean) and exhibits some intermittent
behavior typical of a nonstationary time series. Here nonsta-
tionarity is understood to be the occurrence of statistically
significant variations in the estimate of parameters(such as
the mean, the variance, and power spectrum) as a function of
the part of the series on which they are estimated. Since the
conditions that define the pollen emission(flowering and
wind) and subsequent transport(mainly wind and rain) can-
not be assumed to be stationary over a large time-scale range
(several hours to months), nonstationarity is expected in this
system. The nonstationarity of the series was confirmed by
plotting the cross-sectional prediction error as described by
Schreiber[13], a technique that examines nonstationarity for
nonlinear series. In this method, different sections of a series
are used to predict each other. If the predictions are of suffi-
ciently varying accuracy, the series varies qualitatively over
time, and thus is found to be nonstationary.

Autocorrelation curves and Fourier power spectra of the
series are shown in Figs. 2 and 3, respectively. The autocor-

TABLE I. Matrix of linear correlation coefficients between pol-
len concentration, ambient temperaturesTd, relative humidity(RH),
wind speed(WS), maximum wind speed(WSmax), and precipita-
tion (Preci) for the 2001 Takao dataset(a total of 1416 hourly
values).

Pollen T RH WS WSmax Preci

Pollen 1 0.37 20.33 0.22 0.33 20.07

T 1 20.57 0.48 0.58 0.005

RH 1 20.53 20.65 0.25

WS 1 0.78 20.14

WSmax 1 20.06

Preci 1

FIG. 1. Pollen time series starting February 1 and ending March
31 for(a) 2000 and(b) 2001. Hourly concentration values are plot-
ted as a function of time.
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relation, which indicates the similarity between adjacent val-
ues in the series, decays rapidly within the first 10 lags and
then slowly decreases to a constant value larger than zero.
For short lagss,3d, the high autocorrelation values suggest
that predicition of short-range pollen variations may be pos-
sible. The power spectrum for 2001 in Fig. 3 shows an al-
most continuous shape that could indicate chaotic dynamics
underlying the pollen variations or colored noise. The non-
linearity of the equations of motion of the atmosphere per-
mits chaotic solutions, so finding chaos in the variation of the
pollen series could be a possibility, as previously reported
[6–9].

Unfortunately, nonstationary systems are known to be
very difficult to analyze and predict, and very few statistical
tests are readily available for their analysis. In contrast, a
large body of literature is dedicated to the analysis of deter-

ministic chaos and the reconstruction of its dynamics(for a
review, see[14]). In the following, we first briefly introduce
the time-delay reconstruction method that is widely used in
the analysis of chaotic time series, and then we investigate
our pollen series using the correlation integral technique, the
largest Lyapunov exponent technique, and Casdagli’s test for
evidence of deterministic chaos.

A. Time-delay reconstruction

Techniques for analyzing the dimensionality of the cha-
otic dynamics of a scalar time series are based on the time-
delay reconstruction method introduced by Packardet al.
[15] and later formalized by Takens[16]. With this method,
state vectors in an embedding space are formed from time-
delayed values of theN- point time serieshx1,x2,… ,xNj as
such,

Xtsmd = sxt,xt−t,…,xt−sm−1dtd , s1d

wherem is the embedding dimension andt is the delay time
or lag.

B. Correlation integral

The correlation integral introduced by Grassberger and
Procaccia[17] is one of the most commonly used techniques
for detecting the presence of low-dimensional deterministic
chaos in data. It is defined as

Cmsrd =
2

sN − mdsN − m+ 1doi=m

N

o
j,i

u„r − uXismd − Xjsmdu… ,

s2d

whereu is the Heaviside function.
Cmsrd is interpreted as the fraction of pairs of points that

are separated by a distance less than or equal tor. For a
deterministic chaotic series,Cmsrd behaves as the power law
of r for small r (the scaling law),

Cmsrd ~ rgsmd, s3d

wheregsmd, for a large enoughm, tends to the correlation
dimension of the system. The correlation dimension provides
an estimate of the number of degrees of freedom excited in
the system.

Applying theCmsrd technique to our data, we first check
for the existence of a scaling region and then investigate the
behavior ofgsmd in relation tom. Figure 4 shows a log-log
plot of Cmsrd for the two seasons as a function of the embed-
ding dimensionm. We found that, for a limited scaling re-
gion sr =10 to 50 grains/m3d, the Cmsrd curve slopes con-
verge to a more or less constant value as the embedding
dimension is increased. In addition, theCmsrd sequences for
the two seasons behave differently, with Takao 2001 agree-
ing more closely with the scaling law than Takao 2000. The
embedding dimension is estimated to be in the 5–10 range
for both seasons, as the slope of theCmsrd sequences be-
comes roughly independent of the embedding dimension for
m*6. The correlation dimension estimated from the slopes

FIG. 2. Autocorrelation function of the pollen time series as a
function of the lag for 2000 and 2001. The horizontal dotted line
approximates the 95% confidence interval(given as the upper
bound of the ±2/ÎN interval, outside of which values are statisti-
cally significant).

FIG. 3. Fourier power spectrum for 2001.
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taken at largem was found to vary between 1.5 and 2.5. We
also found that applying the techinique to the first part of the
data sets(before the onset of the large peaks) resulted in
correlation integral plots that have a greater similarity to
those generated by chaotic processes and follow the scaling
law more closely than plots generated using the complete
datasets. From this we concluded that the linear parts seen in
the correlation integral plots were generated by small to me-
dium variationss,500 grains/m3d in the pollen series.

The correlation integral techinique has been developed
and largely tested on time series generated from the numeri-
cal integration of equations and, as such, presents the follow-
ing difficulties when applied to real-world time series:(1)
The number of points avalilable from a neutral times series is
often too small compared with the ideal number of samples
required by the technique,(2) the stationarity hypothesis for
natural series is often unfulfilled,(3) the level of noise is
high in natural series(here it is on the order of
10 grains/m3), and (4) the range of dynamics available for

analysis is narrow, as in our case the variation span is less
than three decades from 10 to 1000. It should also be noted
that the steps seen in our graphs for smallr result from the
discretization of the pollen time series[18].

In conclusion, the small to medium variations of the pol-
len series behave similarly to that of a low-dimensional
chaos dynamic system, but the dimension of the system dy-
namics underlying the data could not be estimated with con-
fidence using the correlation integral technique. Finally, it
should be noted that a positive outcome with the correlation
integral technique does not necessarily indicate a chaotic
process, as nonchaotic processes have been reported to fol-
low the scaling law(e.g., time series generated by a colored
stochastic process[19]).

C. Largest Lyapunov exponent

The Lyapunov exponents measure the rate of divergence
of trajectories having nearby initial conditions, that is, they
measure sensitivity to initial conditions[20]. For a chaotic
series, the largest Lyapunov exponent is positive and pro-
vides an estimate of the level of chaos in a dynamical pro-
cess.

We applied the method described by Rosensteinet al. to
our data to estimate the largest Lyapunov exponent. This
particular method was selected because it is suited to small
data sets[21]. The results we obtained with this method are
shown in Fig. 5. We found that the graphs of the logarithm of
the divergences as a function of time showed some linear
regions form*7, with a slope of,0.1. The graph resembled
that of a low-dimensional chaotic series, but also showed
some similarities with series generated by a stochastic pro-
cess. It is notoriously difficult to distinguish between these
two types of processes using this technique. As with the cor-
relation integral technique, the extraction of the linear region
is somewhat arbitrary and the technique delivers results that

FIG. 4. Correlation integrals computed withm=1, 2, 4, 6, 8, and
10 for (a) Takao 2000 and(b) Takao 2001. Higher curves corre-
spond to lower embedding dimensions. The dashed straight line
corresponds to the scaling law with its slope set at 2.5 and 1.5 for
Takao 2000 and 2001, respectively.

FIG. 5. Variations of the logarithm of the divergences as a func-
tion of the lead time withm=6, 7, 8, 9, and 10. Lower curves
correspond to lower embedding dimensions. The dashed straight
line is a guide to the eye indicating the linear part of the divergence
curves and has its slope set at 0.11.
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are difficult to interpret for our data. Nevertheless, this analy-
sis indicates the posssibility that our pollen series may be
chaotic.

D. Casdagli’s test

Casdagli[22] developed an exploratory technique for in-
vestigating the underlying dynamics that generates a time
series and for detecting low-dimensional deterministic chaos
as opposed to stochastic or high-dimensional behavior. The
strategy is to investigate variations in the prediction error of
the k-nearest-neighbor(local linear) forecasting algorithm in
relation tok, the number of neighbors. Prediction at lowk is
close to(nonlinear) deterministic modeling, while highk cor-
responds to stochastic linear modeling. A general increase in
the prediction error with increasingk is strong evidence of
nonlinear determinism, whereas the opposite trend is evi-
dence of a stochastic process. In his paper, Casdagli uses
local-linear prediction as forecasting algorithm, although he
suggests that other techniques could also be used. We used
zeroth-order(average of thek-nearest-neighbor) prediction

in our study, as the local linear algorithm involves solving a
set of linear equations that may be ill-defined in our pollen
series due to discrete variations in the pollen concentration
and the occurrence of large spikes. In our case, the average
of thek-nearest neighbors proved to be more robust than the
local-linear technique. Further, we used a causality window
with a width of 10 h to reduce the effect of self-correlation
[23]. To test our slight modification of Casdagli’s technique,
we generated prediction error plots for reference series such
as a low-dimensional chaotic series produced by Lorenz
equations(parameters as in[14]), a white noise series, and a
colored noise series, shown in Figs. 6(a)–6(c), respectively.
With the Lorenz series, the root-mean-square error(RMSE)
is small for smallk values and increases significantly ask is
increased, revealing the low-dimensional determinism under-
lying the series. For white noise, the opposite trend is ob-
served, with a reduction in error ask is increased, demon-
strating that these data are better modeled as a stochastic
process than as a low-dimensional deterministic one. Among
the different types of colored noise, we chose red noise be-
cause its autocorrelation function decays with the lag, a

FIG. 6. Modified Casdagli pre-
diction error plots for(a) Lorenz
series,(b) white noise(c) colored
noise (d) Takao 2000 pollen se-
ries, and(e) Takao 2001 pollen se-
ries. The RMSE is shown as a
function ofk in a semilog plot for
embedding dimensions of 2, 4, 6,
8, and 10. Lower curves corre-
spond to lower embedding
dimensions.
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property also observed with the pollen series. The red noise
series was generated by integrating the Ornstein-Uhlenbeck
linear differential equation, which combines a deterministic
exponential decay with additive normally distributed noise
[24]. We found that the red noise series behaved similarly to
the Lorenz series in the Casdagli’s test. The red noise series’
increase in error withk is explained by the presence of some
autocorrelation in the series. The variations of the red noise
series are best represented as a local model. Thus, certain
types of colored noise can mimic the behavior of low-
dimensional chaos in the plot from Casdagli’s test, which
renders the distinction between low-dimensional chaos and
colored noise difficult. Figures 6(d) and 6(e) show prediction
error plots for the Takao 2000 and 2001 pollen time series,
respectively. For the pollen time series, the error variations
with k show a dip atk values of about 10 to 30. The initial
fall in prediction error is due to the noise-canceling effect of
the nearest-neighbor technique. The difference between the
minimum error at the dip and the larger errors ask is in-
creased indicates that our data are better modeled by a local
approach than a global one. These results suggest that our
data feature at least some level of determinism and that it is
worth trying to use thek-nearest-neighbor technique to fore-
cast pollen series.

IV. FORECASTING MODEL

We used various configurations of thek-nearest-neighbor
prediction scheme to compute forecasts with a horizon of 1
h. We varied the embedding dimensionm and the number of
nearest neighborsk of the prediction scheme, tried regular
zeroth-order and distance weighted zeroth-order approaches,
and applied a nonlinear filtering technique and dithering to
the data. Pseudofalse nearest neighbors were not included in
the calculations, as these points representing true neighbors
in the reconstructed state space lie on different trajectories of
the map of the system[25].

We optimized and validated our nearest-neighbor model
using a two-step method. First we calculated in-sample re-
sults by running the nearest-neighbor model at various set-
tings form andk, using data from the first half of 2000 as the
training set(database), and data from the second half as the
test set. Then, we used the bestm and k settings from the
previous in-sample testing to compute the final prediction
accuracy(out-of-sample results). For this stage we used the
data from the first half of 2000 as the training set(database)
and the data from 2001 as the validation set. In both stages,
the database was expanded with vectors which had already
been used for prediction in the test/validation set, as predic-
tions were generated sequentially in time.

The time periods used for the training, test, and validation
sets were February 1, 2000–March 19, 2000, March 20,
2000–March 31, 2000, and February 1, 2001–March 31,
2001, respectively. We used the RMSE and the linear corre-
lation coefficient(CORR) as the performance criteria. The
best performing model was obtained form=4 and k=12.
This model gave an RMSE of 562 grains/m3 and a CORR of
0.69 on the test set, and an RMSE of 214 grains/m3 and a
CORR of 0.80 on the validation set. For comparison pur-

poses, it should be noted that a naïve modelsxi+1=xid gives
an RMSE of 225 grains/m3 and a CORR of 0.79 for the
same validation set. The nearest-neighbor model has better
performance than the naïve model in terms of the RMSE and
the CORR coefficient criteria.

We obtained improvements in model performance when
using the GHKSS nonlinear filter from theTISEAN package
[26]. This filter attempts to reduce the dimensionality(noise)
of the data without smoothing out the peaks, a result that
cannot be achieved with standard linear filtering techniques
such as a moving average. We obtained the best test set re-
sults when we used the GHKSS filter, configured to reduce
the dimensionality from 7 to 5, withm=4 andk=18. This
model gave an RMSE of 558 grains/m3 and a CORR of 0.70
on the test set, and an RMSE of 207 grains/m3 and a CORR
of 0.81 on the validation set. The improvement in RMSE
when using the GHKSS filter is evidence for better modeling
as opposed to averaging. Figure 7 shows pollen concentra-
tion time series predicated using this model together with the
observed series. Good agreement is observed in Fig. 7(a) for
a region of the series that varied relatively slowly, whereas

FIG. 7. Variations in the observed and predicted pollen concen-
tration as a function of time for two data regions(a) a region show-
ing good agreement and(b) an intermittent region showing rela-
tively poor agreement.
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Fig. 7(b) reveals poor agreement for an intermittent region of
the series.

We also tried dithering the data with Gaussian noise to
avoid problems arising from the discrete nature of the data
[27], but it did not significantly improve the model perfor-
mance of the GHKSS filtered data. For the unfiltered data,
however, we observed a slight improvement with dithering.

We confirmed that the results obtained with the
k-nearest-neighbor model and the GHKSS filter were not im-
proved upon by instead using the standard linear autoregres-
sive integrated moving average model[28] or the feed for-
ward artificial neural network model(e.g.,[29,30]). Here we
used the same data division as in the nearest-neighbor model:
training, test, and validation subsets, according to the cross-
correlation data division method[31], with time periods of
February 1, 2000–March 19, 2000, March 20, 2000–March
31, 2000, and February 1, 2001– March 31, 2001, respec-
tively. The best linear model gave an RMSE of
580 grains/m3 and a CORR of 0.68 on the test set, and an
RMSE of 218 grains/m3 and a CORR of 0.8 on the valida-
tion set. The best neural network gave an RMSE of
587 grains/m3 and a CORR of 0.65 on the test set, and an
RMSE of 207 grains/m3 and a CORR of 0.81 on the valida-
tion set. The best neural network model result was the same
as that of thek-nearest-neighbor model when used in com-
bination with a GHKKS filter. The main difficulty with the
neural network approach originated in the training phase,
when the neural network learned to reproduce the large
peaks, since they transferred large errors to the back-
propagation scheme. The resulting neural networks had poor
generalization ability. This was improved somewhat by
changing the error function used by the back-propagation
scheme from a mean-square error to an absolute mean error
function, which is less sensitive to large errors. Moreover, for
the neural network approach to work effectively, more input
data such as meteorological data should be used in the mod-
eling.

In the end, we found that thek-nearest-neighbor model
provided robust hourly forecasts of satisfactory quality for
periods of time without large pollen bursts. This model has
the advantage of relative simplicity compared with the neural
network approach. The predictability of sections of the series
lacking in burst supports our earlier assertion that our pollen
series contain some determinism for parts with small to me-
dium variation. Unfortunately, information on the occurrence
of the pollen bursts is the most important with regard to
helping people to take precautions such as avoiding contact
with large amounts of airborne pollen and their associated
allergens.

V. DISCUSSION

Reports by Bianchiet al. [6] and Arizmendiet al. [7,8]
conclude that pollen time series feature low-dimensional
chaotic dynamics with an attractor dimension of 0.66, as
estimated by the correlation integral and further confirmed
by wavelet analysis. It was also reported that the neural net-
work forecast technique with an embedding dimension of 6
provides accurate forecasts for 1- and 12-h lead times with-

out any significant degradation in forecast performance for
the extremely large lead time of 12 h. In light of our study,
we should like to comment on these results.

Arizmendi and Bianchi’s study of pollen series dynamics
is based on total pollen counts covering different pollen spe-
cies(18 were quoted) over their respective seasons. By ana-
lyzing the complete set simultaneously, one is looking at
different systems(pollen species), which may not necessarily
share the same dynamics. Different plants may produce and
emit their pollen in different ways in terms of their response
to weather conditons.

Also, the estimate of the correlation dimension using the
Grassberger and Procaccia algorithm is notoriously difficult
and should be interpreted with great care(see [18,32] for
examples of erroneous conclusions that can be drawn when
using the method). In particular, the intermittent variations
found in pollen series call for caution when interpreting the
correlation integral. The above references did not provide the
correlation integral graphs for different embedding dimen-
sions, making it difficult to judge the resemblance of the
correlation integral graphs with that of low-dimensional cha-
otic dynamics. For our data, the graphs were not in perfect
agreement with the scaling law, so we could not have great
confidence in the estimated correlation dimensions. The low
dimension of 0.66 reported in the above studies means that
the observed pollen variations could potentially be explained
by a model with only a very few degrees of freedom, in this
case .1, which seems unreasonable for such a complex
natural system.

The forecast results generated using a neural network with
a 1-h lead time(see Figs. 2 and 3 of Ref.[7]) are doubtful as
they agree almost perfectly for the intermittent pollen varia-
tions, whose occurrence demonstrates no apparent time
structure. Furthermore, there seems to be no significant deg-
radation in the performance when the lead time is increased
from 1 to 12 h(see Figs. 4–7 in[7]), which contradicts the
reported chaotic nature of the series. A fundamental property
of chaotic time series is the significant degradation in the
forecast accuracy when the lead time is increased within the
limit given by the return of skill of the system dynamics; see,
for example,[33].

In a different study, Arizmendiet al. [8] published results
obtained by applying the surrogate data test to pollen data.
The surrogate data method tests for a nonlinear process un-
derlying the data. These results apparently reinforced their
previous conclusion on the chaotic nature of pollen time se-
ries. Their data(Fig. 1) reveal intermittent large spikes in the
time series, marking it as nonstationary, since statistics such
as the mean and variance no doubt vary significantly in dif-
ferent sections of the data set. As such, their application of
the surrogate data testing technique is inappropriate[34].
Timmer[35] shows that nonstationarity can produce spurious
results in surrogate data testing and concludes that a positive
test result does not necessarily indicate a nonlinear or chaotic
process, and can result from a nonstationary process instead.

Recently, the same group applied wavelet-based fractal
analysis to the same pollen series[9] and concluded that the
strange attractor underlying the pollen series is better char-
acterized by the spectrum of generalized fractal dimensions
[36] obtained by the wavelet technique than by the Grass-
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berger correlation dimension. The main conclusion relates to
the loss of information with lead time. It is unclear whether
or not the previously reported low-dimensional chaotic dy-
namics of the pollen series was confirmed by this method.

We believe that the body of evidence supporting the low-
dimensional chaotic dynamics of pollen concentration time
series should be enlarged before a definitive conculsion can
be drawn. The nonstationarity of the phenomenon means that
most of the existing analysis techniques do not strictly apply.
Nevertheless, we found some similarities in the overall be-
havior of our pollen series to those generated by low-
dimensional chaotic dynamics. It is possible that the pollen
time series could be described as a low-dimensional chaotic
system with high-dimensional noise, which is also consistent
with the fact that pollen emission is chiefly governed by a
few meteorological parameters(temperature, wind, and rain)
but, at the same time, also features very large degrees of
freedom that cannot realistically be accounted for in a deter-
ministic way (e.g., wind gusts and turbulence generated by
complex terrain). The intermittent pollen bursts probably
originate in these variables. We felt that the large number of
pollen burst events observed during one season made it dif-
ficult to describe the series as low-dimensional chaos, al-
though Casdagli’s test apparently revealed a deterministic
aspect of the pollen series. The nearest-neighbor prediction
method proved useful in forecasting the pollen series with a
1–h lead time, but we do not think that hourly forecasts with
lead times longer than 3 h are a realistic objective in relation
to the investigated time-series techniques. In particular, we
found the onset of large pollen bursts to be a limiting factor
in forecasting hourly pollen concentration series.

VI. CONCLUSION

We studied the natural variations in the concentration of
airborne cedar pollen grains using both standard linear and

nonlinear prediction techniques. We found the Fourier spec-
trum of the pollen time series to have an almost continuous
shape and its largest Lyapunov exponent to be positive, both
properties suggesting a possibly chaotic behavior of the time
series, as previously reported. However, the nonstationarity
of the pollen series made it difficult to use the existing analy-
sis tools and to reach a positive conclusion about the nature
of the pollen series. Moreover, the existence of large inter-
mittent pollen peaks, which could not be predicted accurately
because of an apparent lack of time structure, argues against
the pollen series arising from low-dimensional chaotic dy-
namics. Nevertheless, the results of Casdagli’s test indicated
that our data may feature some level of determinism, which
led us to attempt short-range forecasting of pollen concentra-
tions.

We applied the nearest-neighbor technique to forecasting
pollen series with a 1-h lead time and found that it could
accurately predict small to medium variations but that the
large and intermittent pollen bursts could not be correctly
predicted on an hourly basis. Filtering the data using a non-
linear filter was found to improve the overall model accu-
racy. The nearest-neighbor model combined with a nonlinear
filter (GHKSS) is a good candidate to apply in short-term
pollen forecasting, because it exhibited good performance
and was relatively simple to implement compared with other
methods.

Further research is required to clarify the short-term dy-
namics underlying variations in pollen concentration time
series.
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