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Abstract Much of the current interest in pollen time series
analysis is motivated by the possibility that pollen series
arise from low-dimensional chaotic systems. If this is the
case, short-range prediction using nonlinear modeling is
justified and would produce high-quality forecasts that
could be useful in providing pollen alerts to allergy suf-
ferers. To date, contradictory reports about the character-
ization of the dynamics of pollen series can be found in the
literature. Pollen series have been alternatively described as
featuring and not featuring deterministic chaotic behavior.
We showed that the choice of test for detection of deter-
ministic chaos in pollen series is difficult because pollen
series exhibit 1=f � power spectra. This is a characteristic
that is also produced by colored noise series, which mimic
deterministic chaos in most tests. We proposed to apply the
Ikeguchi–Aihara test to properly detect the presence of
deterministic chaos in pollen series. We examined the dy-
namics of cedar (Cryptomeria japonica) hourly pollen se-
ries by means of the Ikeguchi–Aihara test and concluded
that these pollen series cannot be described as low-dimen-
sional deterministic chaos. Therefore, the application of
low-dimensional chaotic deterministic models to the pre-
diction of short-range pollen concentration will not result
in high-accuracy pollen forecasts even though these mod-
els may provide useful forecasts for certain applications.
We believe that our conclusion can be generalized to
pollen series from other wind-pollinated plant species, as

wind speed, the forcing parameter of the pollen emission
and transport, is best described as a nondeterministic series
that originates in the high dimensionality of the atmosphere.
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Introduction

Allergies are on the rise in modern society, as revealed by
the increasing prevalence of asthma. In Japan, it has been
reported that about 20% of the population suffers from
allergies, from which one in five patients has developed
asthma. While the causes of allergies are still being
debated, the medical community is clear in their advice that
the most effective way to prevent wheezing and asthma
from developing is to avoid inhaling airborne allergens. In
Japan, one of the main sources of airborne allergens is
Japanese cedar (Cryptomeria japonica) pollen. Efforts to
provide cedar pollen forecasts to allergy sufferers have
resulted in the development of real-time forecasting
systems (Kawashima and Takahashi 1995, 1999; Delaunay
et al. 2002). These systems are based on the modeling of
physical processes such as the flowering, emission, and
transport of airborne pollen and can typically provide 2-day
ahead pollen forecasts using meteorological forecasts from
mesoscale models as their inputs. A few media companies
are starting to integrate pollen forecasts generated by these
systems into their weather reports. It is usually found that
short-range (a few hours of lead time) pollen forecasts
produced by these transport models differ significantly
from observed pollen series collected by pollen samplers.
In this respect, time series analysis of measured pollen
concentration may provide a means to improve short-range
prediction and/or to better understand the underlying
dynamics of pollen series. Bianchi et al. (1992) and
Arizmendi et al. (1993) used nonlinear time series
techniques to analyze 2-h pollen series and concluded
that their series exhibited low-dimensional chaotic behav-
ior. Examining cedar pollen series with the correlation
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integral method (Grassberger and Procaccia 1983), the
largest Lyapunov exponent method (Wolf et al. 1985), and
Casdagli’s test (1991), we found no convincing evidence of
low-dimensional chaotic behavior though the pollen series
were found to have some degree of determinism as re-
vealed by Casdagli’s test. One of the problems when using
the above tests to detect deterministic chaos arises from the
existence of stochastic processes such as colored noise that
can masquerade chaotic behavior in these tests. There is a
need to analyze pollen series with a test that can distin-
guish colored noise from deterministic chaos. At the time
we first published our results, we were unaware of the
work of Ikeguchi and Aihara (1997), which addresses the
distinction of deterministic chaos from colored noise. In
their test, the prediction performance of a nonlinear model
is evaluated using two types of correlation coefficients (the
standard linear correlation coefficient and a difference cor-
relation coefficient) between predicted and observed val-
ues. The predictability of the time series can be inferred
from the values of the two correlation coefficients and
thus the dynamics underlying the series classified as deter-
ministic chaos or a stochastic process. Here, we report our
analysis of cedar pollen series using Ikeguchi and Aihara’s
test and discuss the predictability of wind-pollinated pollen
series.

Materials and methods

In this study, we analyzed cedar pollen concentration time
series recorded with a pollen counter of the type KH3000
from the Yamato Corporation (Yamato 1998). The KH3000
is an automatic pollen counter that measures the scattered
light intensities of airborne particles from two light beams,
resulting in information about the size and the shape of the
sampled particles. Spherical particles with a diameter in the
range of 28–35 μm are counted as cedar pollen grains.

Pollen series from two locations in Japan, namely
Yamagata and Takao, were examined (Fig. 1). In the Yamagata
location, the instrument was placed on the roof of the
Murayama Public Health Center of the Yamagata Pre-
fecture and operated for the period 30March 2001–21 April
2001. In the Takao location, the instrument was placed on
the roof of the Forestry and Forest Products Research
Institute of Japan (Hachioji, Tokyo) and operated for two
consecutive cedar pollen seasons, namely 2000 and 2001,
for the period 1 February–31 March. The Yamagata pollen
series represents the dynamics of a pollen series collected
at a site distant (5–10 km) from major cedar plantations
whereas the Takao series represent that of a site close
(<3 km) to major cedar plantations.

The Ikeguchi–Aihara test was introduced to distinguish
stochastic noise with a 1=f � power spectrum from low-
dimensional deterministic chaos. The test compares the
correlation coefficient between observations and one-step-
ahead predictions with a difference correlation coefficient.
Colored noise series generated by stochastic systems

exhibit high values for the correlation coefficient but low
values for the difference correlation coefficient. This
contrasts with series produced by low-dimensional chaotic
systems (e.g., Henon, Ikeda, and Bernoulli maps) for which
both the correlation coefficient and the difference correla-
tion coefficient have high values. The predictions are
obtained using a nonlinear prediction scheme such as the
k-nearest neighbor scheme. We used the local constant
approximation (zeroth order) of the k-nearest neighbor
scheme. First, state vectors are formed from the N-point
time series {x1, x2,..., xN} using the time delay reconstruc-
tion method formalized by Takens (1981):

Xt mð Þ ¼ xt; xt��; :::; xt� m�1ð Þ�
� �

; (1)

where m is the embedding dimension and τ is the delay
time (we used τ=1).

The k nearest neighbors Xk1 mð Þ;Xk2 mð Þ;:::;Xkk mð Þf g of
the state vector Xt(m) are then selected from the collection
of the state vectors. Finally, the one-step-ahead prediction
is computed using:

x̂tþ1 ¼ 1

k

Xk
i¼1

xkiþ1; (2)

Note that the prediction can also be computed using a
weighted function of the distance between the state vector
and its nearest neighbors; here we used a simple average or
local constant approximation. In their paper, Ikeguchi and
Aihara divide the series in two sets, the first half of the
series being used as a database to predict the second half of
the series. Here we used a slightly different method for the
data division, where the complete series, with the exception

Fig. 1 Pollen time series recorded with a KH3000 sampler at
Yamagata for the period 30 March 2001–21 April 2001. Hourly
pollen concentrations are plotted as a function of time



of the part that is to be predicted, is used. This data division
is useful in increasing the amount of data available for the
test in the case of series with a low number of data points,
such as in our pollen series. In this method, the database
has to be redefined for each new prediction.

From Eq. 2, the predicted series x̂1; x̂2; :::; x̂Pf g can be
extracted and compared with the observed series {x1,x2,...,
xP}, where the number P of available predicted values de-
pends on the embedding dimension and on the number of
neighbors used. The observed and predicted series are
compared using two correlation coefficients: the standard
linear correlation coefficient and a difference correlation
coefficient. The standard linear correlation coefficient, de-
noted r1, is:

r1 ¼
P

xi � �xð Þ x̂i � �̂x
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xi � �xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x̂i � �̂x

� �2
r ; (3)

where �x and �̂x are the averages of {xi} and x̂if g .
The difference correlation coefficient, denoted r2, is the

correlation coefficient between the differencesΔxi = xi+1−xi
and �x̂i ¼ x̂iþ1 � xi:

r2 ¼
P

�xi ��x
� �

�x̂i ��x̂
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
�xi ��x
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

�x̂i ��x̂
� �2q ; (4)

We applied the Ikeguchi–Aihara test on a Bernouilli se-
ries, a red noise series, and the pollen series. The Bernoulli
series was produced by numerically iterating a modified
one-dimensional Bernoulli map, as described in Aizawa
and Kohyama (1984). The values we used for the param-
eters of the modified Bernoulli map were B = 3, ɛ =10−13.
The red noise series was generated by integrating the
Uhlenbeck-Ornstein (1930) linear differential equation,
which combines a deterministic exponential decay with
additive normally distributed noise. The Bernoulli and red
noise series were chosen because their power spectra are
similar to that of the pollen series, and they provide a
means to compare our pollen series with series originating
from both a low-dimensional deterministic system and a
stochastic system.

Results and discussion

Figure 2 shows the power spectra of the Bernoulli, red
noise, and pollen series. The three series exhibit 1=f �

power-law spectrum with α ≃ 1.5, 2.0, and 1.5 for the
Bernoulli, red noise, and pollen series, respectively.
According to Fig. 3 of Ikeguchi and Aihara (1997), large
differences between the correlation coefficient and the
difference correlation coefficient are obtained for colored
noise series having α in the range 1.5–3.0 whereas for

Fig. 2 Power spectra of a the Bernoulli series, b the red noise
series, and c the Takao 2001 pollen series



deterministic series, both the correlation coefficient and the
difference correlation coefficient have high values. Thus
the test results make a clear distinction between colored
noise and deterministic series having power-law spectra
with α in the range 1.5–3.0. Our pollen series was found to

be a good candidate for the application of the Ikeguchi–
Aihara test, as it had α ≃ 1.5.

The correlation coefficient and the difference correlation
coefficient are shown as a function of the embedding
dimension in Fig. 3 for the Bernoulli, red noise, and pollen
series. The number of data points N was fixed to 1,000 and
k to 1 for the Bernoulli and the red noise series. For the red
noise series, averaging over 100 trials was used. For the
pollen series, the number k of nearest neighbors was fixed
to 10, as it was found in our previous study (Delaunay et al.
2004) that k ≃ 10 resulted in improved prediction per-
formance. In the graph of the Ikeguchi–Aihara test, both r1
and r2 have values close to 1 for the Bernoulli series
whereas only r1 show high values for the red noise series,
with r2 close to 0. The differences in behavior of r1 and r2
provide a criterion to discriminate deterministic chaotic
series from red noise series. Note that in the case of the
Bernoulli series, both r1 and r2 decrease with the embed-
ding m, a tendency that is explained by the small fractal
dimension of the series (<1 according to Aizawa and
Kohyama 1984) and therefore the small value of the ideal
embedding. The pollen series have high values for r1 and
low values for r2. In the pollen series, the difference
between r1 and r2 is large and argues against the presence
of deterministic chaos. Further comparison between known
deterministic series and stochastic series from real-world
data can be found in Fig. 7 of Ikeguchi and Aihara’s pub-
lication. The behavior of our pollen series does not re-
semble that of known deterministic chaotic series such that
of the squid axon response, the laser, and the measles data,
for which both r1 and r2 have high values. However, the
observed value of r2 for the pollen series is higher than that
of known stochastic series such as stock exchange index
and electroencephalography data, which may be evidence
for a small degree of determinism in the pollen series.

From these results, it can be concluded that the dynamics
underlying the hourly variations in cedar pollen concen-
tration series is not tied to a low-dimensional chaotic
system even though the series exhibits a small degree of
determinism. This validates the results of our first report on
short-range pollen forecasting (Delaunay et al. 2004) and
contradicts a study by Bianchi et al. (1992) claiming low-
dimensional chaotic behavior for their pollen series. In the
latter study, evidence of chaos in the pollen series was
obtained from estimating the correlation dimension, an
approximate value for the dimension of the strange attrac-
tor of a low-dimensional chaotic series. The correlation
dimension was computed using a modified Grassberger
and Procaccia (1983) algorithm and was found to be a
small noninteger value, which was interpreted as evidence

3Fig. 3 Ikeguchi and Aihara’s test showing r1 (solid line) and
r2 (dashed line) as a function of the embedding dimension m for a
the Bernoulli series, b the red noise series, and c the pollen series.
For the Bernoulli and the red noise series, the number of points
N=1,000 and k=1. For the red noise series, the correlation results
were obtained by averaging over 100 trials. For the pollen series,
k=10; both Yamagata (crosses) and Takao (circles) for 2001 are
shown. The Takao pollen series for 2000 exhibits the same trend as
that of the 2001 series and is not shown here



for low-dimensional chaos. Unfortunately, the correlation
dimension is also known to converge to finite values for
stochastic series such as colored noise characterized by a
power-law spectrum (Osborne and Provenzale 1989). For
colored noise series, the computed correlation dimension
varies with the exponent of the power-law spectrum. Thus,
the observation of a small finite value for the correlation
dimension is not sufficient to draw conclusions about the
low-dimensional chaotic behavior of a time series, as
colored noise can mimic the behavior of low-dimensional
chaotic series in this particular test.

One consequence of our findings, which indicate pollen
series do not derive from low-dimensional chaos, is that
one cannot expect to obtain high-accuracy results when
forecasting short-range cedar pollen concentration using
low-dimensional deterministic chaotic models such as local
nonlinear and artificial neural network models. The per-
formance of these models applied to the forecast of 1-h-
ahead cedar pollen concentrations is detailed in Delaunay
et al. (2004). Both local nonlinear and artificial neural
network models were found to have similar prediction
performance; these models were effective in predicting
small to medium pollen variations but failed to reproduce
pollen bursts. We concluded that our pollen series exhibit
a small degree of determinism but cannot be described as
originating from a low-dimensional dynamics because
nonlinear models failed to accurately reproduce intermit-
tent pollen bursts, which is an essential characteristic of
pollen series. The results of the Ikeguchi–Aihara test val-
idated our previous conclusion. However, Arizmendi et al.
(1993), applying artificial neural network models to the
prediction of 2-h-ahead pollen concentration, report al-
most perfect agreement between predicted and observed
values (see Figs. 2–4 of their report). We do not believe
their results to be reasonable in light of the lack of evi-
dence supporting low-dimensional chaotic behavior of
pollen series and would like to suggest that the authors
test their pollen series for the presence of deterministic
chaos using a test such as the Ikeguchi–Aihara test.

We believe that our conclusion on the dynamics of cedar
pollen series should generalize to pollen series of wind-
pollinated plants because for these species, the pollen
emission is chiefly governed by variations in local surface
wind speed, and the dynamics of local surface wind speed

is best described in terms of a high-dimensional nonlinear
system, not a low-dimensional deterministic system.

Finally, the procedure outlined in this report is general
and therefore should be useful in detecting deterministic
chaos in time series of other environmental parameters.
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